منابع مشابه
Malliavin calculus for fractional heat equation
In this article, we give some existence and smoothness results for the law of the solution to a stochastic heat equation driven by a finite dimensional fractional Brownian motion with Hurst parameter H > 1/2. Our results rely on recent tools of Young integration for convolutional integrals combined with stochastic analysis methods for the study of laws of random variables defined on a Wiener sp...
متن کاملAnalytical solutions for the fractional Fisher's equation
In this paper, we consider the inhomogeneous time-fractional nonlinear Fisher equation with three known boundary conditions. We first apply a modified Homotopy perturbation method for translating the proposed problem to a set of linear problems. Then we use the separation variables method to solve obtained problems. In examples, we illustrate that by right choice of source term in the modified...
متن کاملQuadratic variations for the fractional-colored stochastic heat equation∗
Using multiple stochastic integrals and Malliavin calculus, we analyze the quadratic variations of a class of Gaussian processes that contains the linear stochastic heat equation on R driven by a non-white noise which is fractional Gaussian with respect to the time variable (Hurst parameter H) and has colored spatial covariance of α-Riesz-kernel type. The processes in this class are self-simila...
متن کاملOptimal Existence and Uniqueness Theory for the Fractional Heat Equation
We construct a theory of existence, uniqueness and regularity of solutions for the fractional heat equation ∂tu + (−∆) s u = 0, 0 < s < 1, posed in the whole space R with data in a class of locally bounded Radon measures that are allowed to grow at infinity with an optimal growth rate. We consider a class of nonnegative weak solutions and prove that there is an equivalence between nonnegative d...
متن کاملMultigrid Waveform Relaxation for the Time-Fractional Heat Equation
In this work, we propose an efficient and robust multigrid method for solving the time-fractional heat equation. Due to the nonlocal property of fractional differential operators, numerical methods usually generate systems of equations for which the coefficient matrix is dense. Therefore, the design of efficient solvers for the numerical simulation of these problems is a difficult task. We deve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IMA Journal of Numerical Analysis
سال: 2020
ISSN: 0272-4979,1464-3642
DOI: 10.1093/imanum/drz054